Как клонировать растения

Клонирование растений в домашних условиях

Выращивание сада из семечка требует времени, результат при этом непредсказуем. Гораздо проще произвести клонирование растений в домашних условиях путем укоренения черенков. Такой способ позволяет пополнить гидропонику клонами наиболее перспективных материнских растений без материальных и временных затрат. В этом случае вы сможете регулировать численности своих насаждений, их пол, а также внешние параметры и вкусоароматические характеристики плодов. Есть и еще один важный плюс вегетативного размножения – лучшая приживаемость по сравнению с семенами и рассадой, а также повышение урожайности.

Процедура клонирования

При использовании клонирования для пополнения оранжереи действовать нужно в несколько этапов.

  1. Выбираем здоровые отростки без признаков пожелтения или заболевания листьев.
  2. Острым ножом под углом 45 градусов срезаем молодую ветку материнского растения, которая в отличие от старой легко сформирует новые корешки.
  3. Кладем черенок в воду с заранее отрегулированным pH 5,8-6,2.
  4. Срезаем почти всю нижнюю листву, чтобы саженец сосредоточился на образовании корневой системы и не расходовал энергию на развитие листьев;
  5. В случае необходимости перед высадкой обновляем срез.

ВАЖНО: хорошо наточите и очистите лезвие ножа. Так вы избежите повреждения материнского растения и клона, а также предупредите попадание в свежий срез болезнетворных микроогранизмов.

Существует два метода укоренения черенков. В одном из них гроверы дожидаются образования корней, выдерживая срезанный черенок в воде 1-2 недели. Второй метод эффективнее. Он подразумевает применения стимуляторов корнеобразования. Современные изготовители предлагают широкий ассортимент подобных препаратов.

Стимуляторы для быстрого укоренения

Высокоээффективные укоренители в форме геля и спрея есть в линейке английского бренда Growth Technology. Гелевые формулы надежнее, так как обеспечивают плотный контакт препарата со срезанной областью черенка. В результате гель не только защищает клон от патогенов, но также снабжает его витаминами и гормонами для быстрого корнеобразования. По сравнению с традиционным методом результат достигается на 10 дней быстрее.

Clonex Growth Technology подходит даже для укоренения веток с незрелой или перезрелой древесиной. Он не содержит спирта и рекомендован как более безопасный и качественный продукт в сравнении с устаревшими порошками.

Мощные стимуляторы для корнеобразования черенков Clonex вы можете купить

В качестве альтернативы выбирают ускоритель корнеообразования Bioclone от компании BAC. Он подходит как для земли, так и для субстрата с гидропоникой. Препарат защищает срез от плесневелых грибов и инфекций.

Хорошим органическим стимулятором считается Bio roots от компании GHE. Он работает в нескольких направлениях: укрепляет корневой чехлик, повышает иммунитет к патогенам, стимулирует развитие дружественных микроорганизмов для ускоренного роста корней. Экономичен, эффективен в любых средах.

Как еще ускорить приживаемость клонов?

Чтобы обеспечить лучшее укоренение черенков необходимо придерживаться ряда рекомендаций:

  • Выберите субстрат, который будет хорошо удерживать воду, чтобы обеспечивать растущие корни достаточным количеством влаги. Лучше всего с этим справляются кокосовый субстрат и минеральная вата, а вот перлит для высадки клонов выбирать не стоит.
  • Обеспечьте постоянное освещение клонируемых растений, чтобы оптимизировать реакции фотосинтеза и получить больше необходимых для роста углеводов.
  • Поддерживайте оптимальный температурный режим, не допуская переохлаждения и перегрева.
  • Используйте отражатели или окружите ящик с черенками белым материалом, который эффективно отражает свет, направляя его на саженцы.
  • Подкормите клоны витамином В1, N и K.

Удачи и больших урожаев! Остались вопросы – задайте их специалистам High Growing!

Питательная среда для клонирования

Искусственная питательная среда – единственный компонент технологии размножения in vitro, привнесенный человеком. Но чуждых природе веществ в этой среде практически нет. В ее состав входят:

  • сбалансированный комплекс минеральных солей;
  • сахароза (сахар без примесей);
  • витамины (В1, В3, B6, В8, С), необходимые для поддержания роста;
  • гормоны (вещества, регулирующие и направляющие рост в необходимую сторону).

Присутствие в среде гормонов может насторожить любителей экологически чистых продуктов. Но давайте вспомним историю этого метода размножения. Французский ученый Жорж Морель в 1960 г. разработал и предложил технологию массового размножения орхидей в культуре in vitro. А одним из основных компонентов среды, который в то время заменял функцию гормонов, вплоть до 80-х годов был сок кокосовых орехов.

В соке кокоса содержатся те же гормоны, которые сейчас отдельно добавляют в питательную среду, а значит, вещества, которые могут показаться нежелательными «искусственными» компонентами, оказались чуть ли не одними из самых естественных.

Технология, предложенная Ж. Морелем, позволяет быстро и эффективно размножать практически любые растения. Ей дали название – клональное микроразмножение. Большинство рододендронов и орхидей, продающихся сегодня в цветочных магазинах, были произведены при помощи именно этого метода. Особенно замечательно то, что эта удивительная технология позволяет размножать в требуемом количестве растения, которые обычно способны давать отростки всего лишь раз в год.

Еще одна уникальная особенность технологии в том, что размножение растений проводится в изолированных условиях, которые позволяют сохранить клоны свободными от грибковых, бактериальных и вирусных болезней. Отсутствие заболеваний – залог полноценного раскрытия потенциала растения.

Надеемся, что теперь слово клон стало более понятным и не таким пугающим, а клонирование и технология клонального микроразмножения подтолкнет вас к увлечению этими интересными процессами.

Сейчас эта технология стала как никогда близка и доступна: с ее помощью получают высококачественный посадочный материал самых разных культур. Мы, сотрудники компании ООО НПП «МИКРОКЛОН», благодарим вас за внимание и будем рады познакомить ближе с миром клонального микроразмножения.

Клон: история понятия

Впервые термин «клон» предложил использовать известный английский биолог Джон Холдейн (1963 г). Клон (в переводе с греч. – «веточка», «побег» и «отпрыск») – это один или несколько новых организмов, возникших из части или целого органа материнского организма.

Чаще всего человек сталкивается с клонированием в мире растений. Ветка смородины, давшая корни в стакане с водой – один из примеров: куст смородины – материнский организм, а веточка, отделенная от него и пустившая корни – это новый, молодой организм, или клон. То есть, когда вы укореняете черенок хризантемы или листок фиалки, вы занимаетесь самым настоящим клонированием!

Размер части материнского растения значения не имеет, это может быть половина куста пиона или всего одна клетка организма. Чтобы клонировать растение, главное, поместить его часть в условия, в которых она смогла бы вырасти в целый организм. При этом новое растение будет обладать теми же свойствами и признаками, что и материнское.

Клонировать человека уже можно, но пока нельзя. Почему и надо ли?

Вы живете в мире, где можно клонировать животных, флиртовать с виртуальными девушками и играть с куклами-роботами, которых все сложнее отличить от человека. Вернувшись однажды домой с подарком для дочери, вы обнаружите копию самого себя. Вашего клона, который занял ваше место и отобрал вашу жизнь. Если первое предложение вполне вяжется с реальностью, то следующие — это завязка фильма «6-й день» с Арнольдом Шварценеггером. Чувствуете, как сочится эта грань между реальностью и фантастикой?

Коротко. О чем тут речь

  • Кто такие клоны?
  • Как создавали овечку Долли
  • Как клонировать динозавра
  • Чем полезен клон?
  • Вопросы этики

В январе этого года ученые Китайской академии наук сообщили об успешном клонировании приматов тем же методом трансплантации ядер, которым была клонирована уже легендарная овечка Долли. Она умерла еще в 2003 году, и многие мои ровесники смотрели выпуски новостей об этом событии с нескрываемым удивлением, восторгом и толикой страха.

Клонированная овечка. Шутка ли! В подростковом сознании она превращалась в нечто сравнимое с инопланетным киборгом, восьмым чудом света в органической оболочке. Интернет ведь в те годы выдавался крайне ограниченными и дорогими порциями, а потому раскопать информацию о животном было нелегко, по телевизору же говорили довольно общо и смутно…

В общем, с тех пор наука не замерла над трупом клонированной овцы, ставшей мировой знаменитостью. Человечество продвинулось от экспериментов с головастиками до приматов и человеческих эмбрионов. Но обо всем по порядку.

Кто такие клоны?

Клоны получаются в результате клонирования, как бы удивительно это ни звучало. Начнем с того, что даже однояйцевых близнецов можно смело называть клонами, потому что развились они из одной и той же оплодотворенной яйцеклетки. Клонами являются и клетки многоклеточных организмов, и даже растения, которые получились в результате вегетативного (бесполого) размножения: черенками, клубнями, луковицами, корневищами и т. д. Это довольно древний инструмент селекции растений, благодаря которому мы питаемся сносными овощами и фруктами.

Но если с растениями все понятно, то человека или корову луковицей не размножишь. От своих родителей мы получаем по набору генов, наборы эти отличаются, так как папы с мамами у нас разные. А потому и мы получаемся не такими, как только папа или только мама. Каждый из нас уникален! С генетической точки зрения, конечно. И это замечательно: чем больше разных людей, тем шире разнообразие вида и тем сильнее он защищен от каких бы то ни было потрясений окружающей среды.

Как создать клона на примере овечки Долли

Долли родилась 5 июля 1996 года в Шотландии. Произошло это в лаборатории Яна Вилмута и Кита Кэмпбелла в Рослинском институте. Родилась она как самая обычная овца. Вот только мать ее на момент рождения уже давно была мертва. Долли есть пошла из ядра соматической клетки вымени своей генетической матери. Клетки эти были заморожены в жидком азоте. Всего было использовано 227 яйцеклеток, 10% которых по итогу доросли до состояния эмбрионов. Но выжить удалось только одному.

Он подрастал в теле своей суррогатной матери, в которую попал путем пересадки ядра клетки от донора в избавленную от ядра цитоплазму яйцеклетки своего будущего носителя. Двойной набор хромосом подопытная получила только от своей матери, чьей генетической копией и была.

Долли жила как нормальная овца. Правда, большую часть времени проводила взаперти и вдалеке от своих сородичей. Все-таки лабораторный экземпляр. К шести годам у овечки развился артрит, а затем и ретровирусное заболевание легких. Обычно эти животные живут до 10—12 лет, но Долли решили усыпить на полпути, что вызвало много кривотолков в медиа.

Некоторые ученые, как и СМИ, предполагали, что причиной ранней смерти овцы могло стать клонирование. Дело в том, что в качестве базового материала для Долли была выбрана клетка взрослой особи с уже укороченными теломерами. Это такие окончания хромосом, которые с каждым делением укорачиваются. Данный процесс называют одной из основных причин старения.

Последующее изучение скелета подопытной и сравнение ее с более современными клонами показало, что какой-то предрасположенности к артриту у Долли не было. По крайней мере, риски были такими же, как и у обычных взрослых овец.

Как бы то ни было, но клонирование животного подняло ряд моральных и этических вопросов о данной процедуре. В 2003 году ученые предполагали, что до полноценного клонирования человека остался десяток лет. Конечно, они были чересчур оптимистичны, ведь впереди у нас непочатый край работы.

Давайте клонируем динозавра!

Одним из перспективных применений клонирования видится возможность возродить давно утерянные виды животных, а также те, которые постепенно исчезают под поступью научно-технического прогресса. Но, к несчастью, вернуть к жизни динозавров пока не представляется возможным. Ученые в основном находят их окаменевшие останки, в которых нет и капельки органики с генетическим материалом.

Некоторую надежду исследователям подарило обнаружение в костях динозавров белков. Но найденный в останках тиранозавра коллаген оказался таким же, как у страусов, что поставило крест на каких-либо дальнейших экспериментах. Возродить таких животных получится только тогда, когда мы найдем отлично сохранившийся и полноценный генетический материал. Сами понимаете, насколько высоки эти шансы спустя миллионы лет после гибели динозавров.

Но ладно, пускай ученым это удалось на какой-то из Земель в многочисленных параллельных вселенных. Что дальше? Как быть с яйцеклеткой? Где найти достаточно близкий по строению родственный вид, который сможет выносить будущих динозавров? И смогут ли они вообще существовать в условиях современной окружающей среды? Некоторые люди не терпят перестановку в комнате, а бедным динозаврам придется дышать воздухом, который на 21% насыщен кислородом вместо привычных миллионы лет назад 10—15%.

А потому поглядывать стоит на более близкие нам по временной линии виды. Например, последняя замечательная птица додо покинула этот жестокий мир еще в 17-м веке, но знают о ней даже школьники (не уверен, что сегодняшние). Всё благодаря карикатурному автопортрету Льюиса Кэрролла из «Алисы в Стране чудес».

Несколько экземпляров этой птицы в виде чучел сохранились в разных музеях. Сохранились также их мягкие ткани, а среди родственников значится никобарская голубка, которая и могла бы выносить потомство додо. Правда, пока все это лишь разговоры.

Среди известных, но, к сожалению, провальных попыток реанимировать умерший вид значится пиренейский козерог, который исчез относительно недавно — в 2000 году. В 2009-м родился его клон, который прожил всего семь минут.

Зачем мне нужен клон?

Пока в теории, но не всегда на практике обсуждаются два вида человеческого клонирования: терапевтическое и репродуктивное. Первый подразумевает клонирование клеток тех или иных тканей (не органов) в целях трансплантации. Полученные таким образом ткани не будут отторгаться организмом пациента, потому что являются по сути его собственными. Полезная вещь.

Как это работает? Берется клетка пациента, ядро которой пересаживается в цитоплазму (внутреннюю среду) яйцеклетки, уже лишившейся своего ядра. Эта яйцеклетка множится, развивается в ранний эмбрион пяти дней от роду. Затем в чашках Петри полученные стволовые клетки превращаются в ткани, необходимые ученым и медикам.

Кому может понадобиться репродуктивный клон? Людям, которые потеряли своих близких и хотят их таким образом вернуть? Но клоны не рождаются с нужным возрастом. Такое бывает разве что в научной фантастике.

Вопросы этики

У клонирования пока слишком много неразрешенных этических проблем. И работа с эмбрионами, пускай на самой ранней стадии их развития, приводит к волнам критики в адрес генетиков. В частности, со стороны религиозных организаций. Все-таки искусственное создание жизни и уподобление богам они одобрить не могут.

К тому же репродуктивное клонирование человека прямо запрещено во многих странах мира и грозит уголовной ответственностью. Да, отработанные на животных методики существуют и ученые не видят никаких препятствий к клонированию человека, кроме моральных. Однако проблема в том, что животные — не личности. Нет, я люблю и уважаю животных (не всех), но факт остается фактом: они встроены в нашу пищеварительную цепь. И никто не спрашивает у клона коровы ее мнения по поводу прожарки бифштекса.

Репродуктивное же клонирование человека предполагает, что он не будет простым набором органов, а за годы сформируется в личность, которая сможет коренным образом отличаться от оригинала (это, в частности, демонстрируют близнецы). И правовой статус клона будет неопределенным: какие у него вообще должны быть права и обязанности? Как он должен взаимодействовать со своим оригиналом? Для кого он будет внуком или наследником?

Что касается терапевтического клонирования, то оно также находится под запретом во многих странах мира. Хотя ради научных целей всегда могут сделать исключение.

Высказывалась о клонировании человека и ООН. Негативно. В Декларации о клонировании человека от 2005 года организация заявила, что применение достижений биологических наук должно служить облегчению страданий и укреплению здоровья личности и человечества в целом. Документ призывает запретить все формы клонирования людей в такой мере, в какой они несовместимы с человеческим достоинством и защитой человеческой жизни.

Несмотря на это, несмело, стыдливо, но неумолимо к изучению терапевтического клонирования приступает все больше научно-исследовательских институтов. Когда наступит время, человечеству все-таки придется взвесить все за и против, снять этические вопросы и решить моральные дилеммы. Потому что прогресс можно отсрочить, но не отменить.

Электронные книги в каталоге Onliner.by

Партеногенез.

Клонирование в природе наблюдается в случае т.н. партеногенеза, когда потомство развивается из неоплодотворенной женской гаметы (яйцеклетки). Этот процесс широко распространен среди насекомых. Поскольку родительская особь всего одна, она генетически идентична потомкам и составляет с ними клон. У млекопитающих партеногенез можно искусственно стимулировать, но эмбрион погибает на ранних стадиях своего развития.
См. также ЯЙЦО; РАЗМНОЖЕНИЕ.

Искусственное клонирование

Это группа методов, при которых целенаправленно создаются клоны молекул, клеток, многоклеточных организмов.

Бактериальное клонирование — это целенаправленное создание и выращивание бактериальных клонов для биотехнологий.

Молекулярное клонирование, при котором получают клоны фрагмента ДНК, а затем вставляют в необходимые клетки.

Искусственное клонирование многоклеточных организмов. При этом виде клонирования можно создать клоны клеток, тканей, целого органа или даже организма. Именно искусственное клонирование многоклеточных организмов является предметом споров и разногласий научного сообщества, религии, и предметом этой статьи.

Немного о биологии размножения многоклеточных организмов

Совокупность наследственного материала клетки называется геномом. Многоклеточные организмы — эукариоты. Одной из особенностей эукариотических клеток является то, что наследственный материал находится в ядре клетки в виде хромосом, а также в виде кольцевидной ДНК в митохондриях.

Хромосома — нитевидная структура, состоящая из ДНК и белков. Именно ДНК несет генетическую информацию. Например, в ядре клеток человека содержится 23 пары хромосом (то есть всего 46) . В половых клетках человека содержится половина — 23 хромосомы. При соединении двух половых клеток — маминой и папиной — получается клетка зигота с 46-ю хромосомами (рис. 1). Зигота дает начало всем будущем клеткам и тканям организма. Таким образом, в естественных условиях все клетки многоклеточного организма несут генетическую информацию от своих отца (мужской гаметы) и матери (женской гаметы) . Клетки, содержащие 23 хромосомы, называются гаплоидными, а содержащие все 46 хромосом — диплоидными. В организме млекопитающих все клетки, кроме половых, являются диплоидными соматическими , .

Рисунок 1. Результат оплодотворения — зигота человека

У разных млекопитающих — разное количество хромосом (см. табл.).

Название млекопитающего Количество хромосом диплоидного набора Количество хромосом гаплоидного набора
Человек 46 23
Шимпанзе 48 24
Овца 54 27

При клонировании нет процесса оплодотворения (слияния) двух половых клеток. У этого многоклеточного организма (клона) не будет отца и матери в общепринятом смысле слова. У него будет один генетический «родитель». Тот, чье ядро использовалось для клонирования.

Лабораторное клонирование антител.

Все позвоночные для защиты от инфекций вырабатывают особые белки – антитела. Разработаны методы их клонирования, позволяющие получать большие количества идентичных молекул. Произведенные таким образом антитела называются моноклональными. Эти высокоспецифичные вещества используются для определения концентрации ряда белков в жидкостях тела, например белковых гормонов, или для выявления раковых клеток (и возможного воздействия на них), что очень важно в научных исследованиях, а кроме того, является относительно недорогим методом диагностики некоторых заболеваний.

Клонирование генов.

Становится известно все больше специфических генов, связанных с развитием определенных болезней. Эти гены научились выделять из организма и присоединять к ним соответствующие промоторы, т.е. участки ДНК, управляющие их работой. Получаемые генные комплексы можно клонировать несколькими способами. Один из них – полимеразная цепная реакция (ПЦР), т.е. размножение нужного участка ДНК с помощью фермента полимеразы, что позволяет удваивать количество генных копий каждые несколько минут (см. также ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ). Клонированные таким образом гены можно затем ввести в организм животного (получив т.н. трансгенную особь), которое в результате приобретет способность синтезировать нужное вещество, например ценный фармацевтический продукт. Трансгенные животные служат также моделями для изучения ряда тяжелых болезней человека, в частности муковисцидоза.

Клонирование млекопитающих.

Выше уже приводились примеры разных типов клонирования в природе. Если любому зверю порезать кожу, клоны новых клеток быстро приходят на смену поврежденным. Однако клонирование целых высокоорганизованных организмов – процесс гораздо более сложный, чем заживление раны.

Зачем вообще клонировать животных? Во-первых, можно было бы воспроизводить ценные с той или иной точки зрения особи, например чемпионов пород крупного рогатого скота, овец, свиней, скаковых лошадей, собак и т.п. Во-вторых, превращение обычных животных в трансгенных сложно и дорого: клонирование позволило бы получать их копии. Проектируется производить трансгенных млекопитающих, способных синтезировать факторы свертывания человеческой крови и другие жизненно важные для нас продукты и выделять их в составе своего молока. Широкомасштабное развитие такой биотехнологии сэкономило бы огромные количества донорской крови, запасы которой ограничены и могли бы использоваться более эффективно.

Первые опыты.

Первый опыт клонирования земноводных датируется 1952. Впоследствии удалось клонировать также мышей, кроликов, овец, свиней, коров и обезьян. Все успешные эксперименты такого рода начинались с клеток эмбриона, изолируемых на ранних стадиях развития до начала их дифференцировки в т.н. зародышевые листки, дающие начало специализированным тканям и органам. Эти клетки (бластомеры) разделяют, пока их число в зародыше не превысило 32 или 64, и с помощью особых микрохирургических методов помещают по одной в ооциты (неоплодотворенные яйцеклетки), из которых предварительно удаляют ядро. У всех бластомеров одного эмбриона одинаковый набор генов, а ооциты служат для них как бы инкубатором. После соответствующей электрической и/или химической стимуляции и культивирования из этих клеток можно получить идентичные зародыши и перенести их (имплантировать) в матку готовых к зачатию самок того же вида. В конечном итоге такие «приемные матери» родят почти идентичных детенышей, однако вся процедура в целом остается с практической точки зрения крайне неэффективной. Вместо вынашивания всех эмбрионов из первого клона практикуют также их разделение на бластомеры и повторный цикл клонирования, получая в итоге гораздо большее количество пригодных для имплантации зародышей.

Открывающиеся перспективы.

Работы Уилмата и других биологов служат основой для новых исследований, которые могли бы значительно расширить наши представления о функционировании генов в ходе нормального развития, а также при воздействии на них ряда лекарственных веществ и стрессовых факторов. Это позволило бы усовершенствовать медицинское обслуживание путем создания и применения новых недорогих инструментов ранней диагностики и лечения. Если бы таким путем удалось разработать методы генной терапии, т.е. «исправления» аномальных генов, ответственных за опасные для жизни врожденные нарушения, человечество смогло бы избавиться от некоторых наследственных заболеваний, серьезно снижающих трудоспособность и сокращающих жизнь людей.

О ценности клонирования для создания трансгенных и элитных животных уже говорилось. При его широком применении можно было бы накапливать в замороженном виде неограниченные количества эмбрионов и другого материала, сохраняя таким образом ныне существующую «зародышевую плазму» во всем ее разнообразии.

Клонирование в мире животных

Не менее удивительно, что клонирование освоили и животные. Из школьного курса биологии многие помнят маленькое хищное животное – гидру (Hydra). Для нее клонирование вполне естественно: на боковой поверхности тела-стебелька образуется нарост в виде веточки, на конце которого впоследствии прорезается рот и вырастают щупальца. Через несколько дней молодая гидра отделяется от тела родительской и начинает самостоятельную жизнь.

Гидра обыкновенная с молодой гидрой-почкой – пример природного клонирования в мире животных

Клонирование освоили даже хордовые животные (хорда – предшественник позвоночника), то есть дальние родственники человека.

Таким способом могут размножаться асцидии (Ascidiacea). В возрасте личинки они похожи на маленькую рыбку-головастика. Через некоторое время личинка прикрепляется головной частью к камню и претерпевает изменения, в ходе которых на ее теле формируются новые особи – клоны родительского организма.

РАЗМНОЖЕНИЕ

21.3. Искусственное размножение растений — клонирование

В сельском хозяйстве и садоводстве используют ряд методов искусственного размножения растений. Первые три из описанных ниже методов, а именно — черенкование, прививки и размножение отводками, — традиционные способы, однако на коммерческом уровне они постепенно вытесняются современными методами с применением культуры ткани.

21.3.1. Черенкование

Это несложная процедура, при которой отрезают часть растения и помещают ее в подходящую для роста среду. Со временем черенок пускает корни и вырастает в новое растение. Окоренение можно ускорить гормонами, стимулирующими образование корней. Таким способом обычно размножают широко распространенные комнатные растения — герань и пеларгонию. Другое распространенное комнатное растение — узамбарскую фиалку, или сенполию, размножают отрезанными листьями. Черенкованием размножают черную смородину, отрезая осенью побеги на продажу. Так же размножают хризантемы.

21.3.2. Прививки черенками и почками

Прививка черенками производится путем переноса части растения — привоя — на нижнюю часть другого растения — подвоя. Первоначально прививки делали на яблонях, потому что эти деревья не удавалось выращивать из черенков, а у яблонь, выращенных из семян, наблюдалась слишком сильная изменчивость, так как семена получали путем полового размножения. Теперь эти прививки используют также для размножения других плодовых деревьев, например персиковых, а также слив. Привой выбирают по качеству плодов, а подвой — за такие качества, как устойчивость к болезням и к неблагоприятным условиям.

Розы обычно размножают одним из вариантов этого метода — так называемой окулировкой, при которой в качестве привоя используют не побег, а почку. Новые сорта создают путем полового размножения, однако, как и в случае плодовых деревьев, получить таким способом чистый сорт не удается. Поэтому для сохранения желаемых сортов приходится прибегать к тем или иным способам вегетативного размножения.

21.3.3. Размножение отводками

Отводками размножают растения, выбрасывающие плети, или усы, например землянику. Усы пришпиливают, пока они еще сохраняют связь с родительским растением, а после того, как на них образуются собственные корни, отрезают от него.

21.3.4. Культура ткани, или микрорепродукция

Микрорепродукцией называют размножение, или клонирование, растений с помощью культуры ткани. Приставка «микро» указывает на то, что в качестве исходного материала обычно используют мелкие объекты — либо отдельные клетки, либо маленькие кусочки ткани. Этот материал выращивают на специальных культуральных средах и поэтому называют культурой ткани. В основе культивирования лежат эксперименты, показавшие, что кусочки ткани, отделенные от растений, можно заставить расти в растворе, содержащем питательные вещества и некоторые растительные гормоны, в частности ауксины и цитокинины. Гормоны необходимы для поддержания непрерывного деления клеток. В настоящее время культуру ткани широко используют для сохранения выведенных сортов растений (рис. 21.11).

Рис. 21. 11. Культура ткани. А. Растение первоцвета с хорошо развитыми листьями, которые можно разрезать на много мелких частей для клонирования. Б. Фрагменты листа перенесены на агар с соблюдением стерильности. В. Один из фрагментов листа, на котором образовался каллус и новый побег. Г. Побег отделили от фрагмента листа и поместили на достаточно толстый слой агара, чтобы стимулировать рост корней. Д. Молодые клоны пере несли в рыхлую культуральную среду, чтобы усилить развитие корней. Е. Идентичные растения, полученные из одного фрагмента листа путем клонирования.

Тотипотентность

В начале шестидесятых годов прошлого века было показано, что ядра зрелых растительных клеток содержат всю информацию, необходимую для кодирования целого организма. Проф. Ф. Стьюард из Корнеллского университета (США) показал, что зрелые клетки моркови, помещенные в подходящий культуральный раствор, можно вновь заставить делиться и образовывать новые растения моркови. Эти клетки назвали тотипотентными, поскольку они, даже после достижения зрелости и специализации, сохраняют способность при наличии подходящих условий начать делиться, образуя новые растения.

Преимущества культуры ткани

Ниже перечислены некоторые из важных достоинств метода культуры ткани. Более подробные сведения изложены в конце этого раздела.

1. В ряде случаев можно быстро размножить растения с желаемыми признаками, получая много идентичных копий. Этого нелегко добиться, используя традиционные методы, основанные на половом размножении, особенно если растения адаптированы к перекрестному опылению и аутбридингу (см. далее). Метод культуры ткани имеет важное значение при выращивании ряда зерновых и других сельскохозяйственных растений. Он позволяет быстро размножать новые сорта, полученные путем скрещивания растений.

2. Используя культуру ткани, можно генетически изменять («трансформировать») клетки и выращивать из них целые растения, известные под названием трансгенных (см. разд. 25.2.1).

3. Культивирование клеток не требует много места.

4. Условия культуры ткани исключают возможность заражения растений какими- либо болезнями. Вирусы устраняют описанными ниже методами.

5. Разработаны новые методы создания гибридов путем слияния протопластов, т. е. клеток, освобожденных от своих оболочек. Таким способом удалось получить межвидовые гибриды (например, гибрид картофеля и томата).

6. Эти методы могут оказаться эффективными для получения из растений ценных химических веществ, например лекарств.

Описание метода

Культуральная среда обычно содержит соответствующие питательные вещества и гормоны (см. разд. 16.2). Стандартная среда должна содержать неорганические ионы, необходимые для роста растений, в том числе азот, магний, железо и калий (см. табл. 7.7). Кроме того, нужны сахароза, как источник энергии, и витамины. Эти химические вещества обычно смешивают с агаром, получая желеобразную питательную среду, сходную с той, которую используют для выращивания бактерий и грибов. В культуральной среде должны содержаться незаменимые гормоны — ауксин, стимулирующий рост корней, а также рост клеток в продольном направлении, и цитокинин, стимулирующий рост побегов и клеточное деление. Различные соотношения ауксина и цитокинина оказывают разное влияние на характер развития неспециализированных клеток. Культуру ткани выращивают на поверхности агара в колбах или в чашках Петри.

Температуру, интенсивность и качество света, продолжительность светового дня и влажность регулируют, выращивая культуры в специальных помещениях. Все процедуры проводят в стерильных условиях, так как в культурах могут поселиться бактерии и грибы, растущие быстрее и, следовательно, способные выйти победителями в конкуренции с растениями. Саму растительную ткань стерилизуют, обрабатывая ее поверхность разведенным белильным раствором; остальные материалы также стерилизуют перед употреблением. При работе со всей установкой следует постоянно обеспечивать стерильность, как это делают при микробиологических исследованиях (разд. 12.3).

На рис. 21.12 кратко охарактеризованы основные методы выращивания новых растений с использованием культуры тканей. Фрагменты, взятые от растения, подлежащего размножению, называют эксплантатами. Самый обычный метод состоит в использовании меристематической ткани из верхушечных или пазушных почек. Меристемой называют ткань, в которой клетки все еще продолжают делиться. Другой способ состоит в создании каллуса из немеристематической ткани (рис. 21.13). Каллус — это масса недифференцированных (неспециализированных) клеток. Рост корней или побегов из каллуса или из немеристематической ткани можно стимулировать добавлением ауксинов или цитокининов. На рис. 21.13 видны молодые проростки, возникающие из каллуса. Иногда появляются не побеги и не корни, а зародыши; если поместить их на агаровое желе, они могут дать начало маленьким растеньицам. На рис. 21.11 показаны дальнейшие стадии этого процесса.

Рис. 21.12. Методы получения клонов от одного исходного растения.

Рис. 21.13. Крошечные растения табака, развившиеся из культуры каллусной ткани на стерильном агаре.

Растения, свободные от вирусов

Вирусы могут распространиться по всему растению, и предотвратить их переход с одного растения на другое при размножении традиционными методами очень трудно. Однако обычно вирусы не проникают в верхушечную меристему. Поэтому для получения растений, свободных от вирусов, методом клонирования можно использовать меристемы. Тепловая обработка меристем позволяет повысить уверенность в отсутствии вирусов. Следует создавать фонды меристем, свободных от вирусов, с тем чтобы можно было по мере надобности получать новые растения. Это позволяет снизить расходы по созданию защищенных от инфекций теплиц и служит более надежным способом предотвращения распространения болезней, чем традиционные методы. Так размножают картофель, плодовые деревья, некоторые луковичные и декоративные растения.

Получение безвирусного картофеля

Культуру ткани используют в широких масштабах для разведения декоративных растений, плодовых деревьев и в плантационных хозяйствах, выращивающих такие культуры, как масличная и финиковая пальмы, сахарный тростник или бананы; однако в отношении сельскохозяйственных культур этот метод применяли мало. Единственное исключение составляет картофель (табл. 21.1). Одной из причин этого была возможность получить таким образом растения, свободные от вирусов. Повторные пересевы меристемы позволяют получать большое число маленьких растений, используемых затем для получения мини-клубней, величиной с горошину (рис. 21.14), которые можно высевать подобно семенам. Одно растение способно давать в год свыше полумиллиона мини-клубней. Это позволяет ускорить процесс интродукции новых сортов картофеля, обладающих, например, устойчивостью к серьезной вирусной болезни — скручиванию листьев.

Таблица 21.1. Сравнение традиционных методов размножения клубней картофеля с методом культуры ткани (микроразмножение)

Рис. 21.14. Мини-клубни картофеля выглядят совершено так же, как обычные клубни, только размеры их не больше размеров горошины.

Картофель считается одним из важнейших культурных растений. Он занимает четвертое место в мире среди сельскохозяйственной продукции после таких злаков, как рис, пшеница и кукуруза. В последнее время его популярность растет в азиатских странах. До недавнего времени можно было интродуцировать новые сорта только путем кроссбридинга растений с желаемыми признаками. Однако существует несколько подвидов картофеля и не все они скрещиваются между собой. Среди тех, которые скрещиваются, некоторые дают только стерильные гибриды. Кроме того, выведение стабильного нового сорта путем повторных генетических скрещиваний занимает обычно 10—15 лет.

Используя культуру ткани, можно получать в массовых количествах как дикорастущие родичи картофеля, так и культурные сорта. Теперь новые сорта картофеля селекционеры способны создавать очень быстро путем переноса полезных генов от, например, дикорастущих родичей культурного сорта или даже от совершенно неродственных растений в отдельные клетки, используя методы генетической инженерии. В наиболее распространенном методе в качестве вектора используют Agrobacterium (см. гл. 25). Затем из трансформированных клеток в культуре ткани можно выращивать небольшие растения и далее размножать их, как было описано выше. Таким образом ген, контролирующий один из белков оболочки вируса, вызывающего скручивание листьев картофеля, был введен в сорта картофеля Дезирэ и Пентленд Скуайр, что эквивалентно вакцинации против этого вируса. Хотя при этом картофель все же может заразиться, однако в таком картофеле вирус размножается гораздо медленнее, чем обычно, и у растения либо наблюдаются незначительные проявления болезни, либо их нет вовсе.

Другой метод, с успехом применяемый к картофелю, состоит в слиянии двух соматических (неполовых) клеток от разных сортов. Для этого у клеток сначала удаляют клеточные стенки, чтобы получить голые протопласты. Образующиеся в результате слияния протопластов соматические гибриды можно выращивать в культуре ткани. Это могут быть гибриды между двумя сортами, которые не удалось бы скрестить половым путем ввиду их несовместимости. Таким образом из дикорастущего картофеля были получены промышленные сорта, устойчивые к вирусу скручивания листьев и к холоду.

Преимущества метода культуры ткани

1. Быстрое размножение. На образующихся при клонировании побегах обычным порядком развиваются почки. Эти почки можно использовать для генерации новых побегов с помощью того же метода культуры ткани. Путем непрерывного повторного клонирования почек число потенциальных растений умножается на каждой стадии. В результате в течение определенного периода от одного побега можно получить тысячи или даже миллионы растений. Это намного быстрее, чем при использовании традиционных методов разведения, так что новые сорта могут быть интродуцированы на несколько лет раньше.

2. Генетическое единообразие. Растения, получаемые при использовании метода культуры ткани, генетически идентичны; иными словами, все они обладают желаемыми признаками исходного растения и размножаются в чистоте. Такие растения (т. е. растения, гомозиготные по желаемым признакам) очень трудно получить при половом размножении.

3. Здоровые растения. Как уже объяснялось выше, используя для размножения меристематические ткани, можно избежать вирусных болезней. Поскольку все процедуры проводятся в стерильных условиях, растения не подвержены опасности заражения поверхностными бактериями и грибами, среди которых могут быть и болезнетворные формы.

4. Культура ткани требует относительно немного места по сравнению с выращиванием растений в теплицах или на полях.

5. Метод культуры ткани не зависит от сезонных изменений погодных условий, т. е. растения с заданными свойствами можно получать в любое время года, тогда, когда их можно продать дороже всего.

6. Возможен более тщательный контроль за развитием растений, что гарантирует единообразие продукта, предлагаемого покупателю.

7. Некоторые растения, например бананы, стерильны и их можно размножать только бесполым путем.

8. Семена некоторых растений, например определенных орхидных, трудно проращивать. Их надежнее размножать бесполым путем.

9. Культура ткани в сочетании с методами генетической инженерии позволяет получать трансгенные растения (см. разд. 25.4).

10. Поскольку культуры ткани не громоздки, их экономично транспортировать по воздуху, что расширяет возможности международной торговли.

Недостатки метода культуры ткани

1. Метод требует больших затрат рабочей силы и менее удобен, чем высеивание семян. Кроме того, он требует достаточно высокой квалификации. Его применение в широких масштабах порождает определенные проблемы в плане организации и обучения персонала. При этом значительно возрастает и стоимость полученного продукта. Обычно применение этого процесса экономически выгодно только для дорогих культур, таких как декоративные растения, и нерентабелен для дешевых культур, например моркови.

2. Необходимость поддерживать стерильные условия. Это еще больше повышает расходы и усложняет весь процесс.

3. Растения, полученные из культур каллуса, иногда претерпевают генетические изменения. Небольшая доля этих изменений может оказаться коммерчески выгодной, но в большинстве случаев они нежелательны.

4. Поскольку клоны генетически идентичны, сельскохозяйственные культуры сильно подвержены заражению новыми болезнями и очень чувствительны к изменениям условий среды. Эти факторы могут полностью уничтожить некоторые культуры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *